Who is karyomapping for?

You may know that you are a carrier of a genetic disorder. You may already have an affected child, be aware of a family history of the disorder, or have had your DNA tested to confirm that you carry a defective gene.

Karyomapping is a technique that allows couples – known to be carriers of an inherited condition – to avoid passing on that disorder on to their offspring. The technique works by screening embryos for the problem before implantation in the womb (uterus) – a technique called preimplantation genetic diagnosis or PGD for short.

PGD greatly reduces the chance that a fetus will be affected by the genetic disorder and consequently it is much less likely that termination of a pregnancy will need to be considered or that an affected child will be born.


Why is IVF required?

In order to carry out PGD in vitro fertilisation (IVF) is essential. This process involves collecting several eggs from the ovaries and fertilising them outside the body (in vitro) to produce several embryos. Each of the embryos can then be tested to find out which is healthy.

Only the embryos that are predicted to be free of the genetic condition are transferred to the uterus and consequently any pregnancy that begins has a low risk of being affected by the disorder.


How does karyomapping work?

A blood sample is taken from the father, the mother and one or more relatives who are affected by (or carriers of) the disorder. The relatives used may be an affected child, or the parents of the couple. These relatives are referred to as ‘references’.

Karyomapping looks at the chromosomes, the rod-like structures that are found in cells and contain the genes. Karyomapping examines the chromosomes of the mother, father and the reference at 300,000 different points, looking for features characteristic of the defective chromosome. Essentially, karyomapping finds a fingerprint that is unique to the chromosome that carries the defective gene. It is then possible to test embryos produced using IVF for this presence of this fingerprint. Whenever the fingerprint is seen in an embryo, it means that it has inherited the chromosome carrying the defective gene.

If the fingerprint characteristic of the chromosome carrying the defective gene is not detected then it can be inferred that the embryo has inherited normal copies of the gene and is therefore likely to be free of the disorder. Embryos of this type are good candidates for transfer to the mother’s uterus (womb).


How does karyomapping differ from other PGD tests?

Up until recently, PGD tests for disorders caused by inheritance of a defective gene had to be tailor made for each couple. This required months of work by highly skilled scientists, meaning that there was often a long wait before IVF treatment could begin. By contrast karyomapping provides a universal test for PGD of almost any gene defect. This reduces the waiting time before treatment can begin to just a few weeks.


Does karyomapping detect any other disorders caused by abnormal genes?

We will only use karyomapping to assess embryos for the single condition that affects your particular family. In rare cases, a family may be at risk for two different inherited conditions. In such cases it is usually possible to screen embryos for both problems using karyomapping. Additionally, please note that for IVF treatments carried out in the UK, disorders may only be tested if approved by the Human Fertilisation and Embryology Authority.

Aside from the particular genetic condition that affects your family, the karyomapping test will not detect any other rare genetic conditions caused by mutations in single genes.

If you are concerned about the risks of carrying another rare genetic condition, please ask our Genetic Counsellor about the option of a carrier screening test for a panel of genetic disorders, or click here for more information.


Does PGD detect chromosome abnormalities?

Chromosomes are tiny, rod-shaped, structures that are found in almost all of the cells of the body. The chromosomes contain the genes, the chemical instructions that control cells. There should be exactly 46 chromosomes in every cell. Unfortunately, some embryos produced during IVF treatments have the wrong number of chromosomes. When these embryos are transferred to the uterus they usually fail to implant and so there is no pregnancy.

On some occasions an embryo with an incorrect number of chromosomes may succeed in implanting, but the pregnancy produced usually ends with a miscarriage. More rarely, embryos with an abnormal number of chromosomes manage to produce a baby, but in such cases the child may be affected by problems such as Down syndrome.

Our genetic testing of embryos can detect most (although not all) embryos with an incorrect number of chromosomes and can therefore help guide doctors to the embryo most likely to produce a healthy pregnancy. Transferring embryos with the correct number of chromosomes to the uterus reduces the chance of miscarriage and Down syndrome, but cannot entirely eliminate the risk of these problems.


How accurate is karyomapping?

Karyomapping is used to test a single cell (or sometimes a small number of cells) taken from an embryo before it is transferred to the uterus. A test carried out on such a minute amount of tissue can never be 100% accurate. In most cases, the chance of karyomapping successfully detecting an embryo affected by a specific inherited disorder is better than 95%.

Because there is a small chance of an incorrect diagnosis using karyomapping, it is strongly recommended that prenatal testing (for example amniocentesis or chorionic villus sampling – CVS) is used to confirm that any pregnancy is unaffected. Amniocentesis and CVS collect many thousands of cells from the fetus and are therefore more accurate.

Like all tests involving analysis of embryos, karyomapping should be considered a way of reducing the risk of having an affected pregnancy, not an absolute guarantee.


What are the requirements for karyomapping?

In order to utilise karyomapping, a sample of DNA is needed from the couple undergoing IVF treatment (both the woman and the man). These samples can easily be collected using a cheek swab. Additionally, samples are needed from at least one more relative who carries the same defective gene.

If the disease is recessive (in which case each of the patients carries a defective copy of the gene), a sample may be needed from relatives on each side of the family (i.e. someone on the maternal side who has the same defective gene as the mother and someone on the paternal side who shares the father’s mutant gene). The most straightforward strategy in a case like this is to obtain a DNA sample from an affected child that the couple have, as they are related to both of the parents, but if there are no samples available from an affected child, samples from the couple’s parents are usually sufficient.

In the case of a dominant disorder, only one side of the family carries a defective gene, so additional samples are only needed from that side of the family – i.e. samples are needed from the couple and an affected child, or parent affected by the disorder.

In some cases a sample is also requested from an unaffected (or non-carrier) relative, in order to compare the DNA fingerprint associated with the mutated gene, with that of the normal gene in the family.

In all cases, official genetic test reports are required for any affected or carrier relative, before the test work up is carried out using their DNA as a reference.


How long does the process take?

The time required to prepare for a PGD case involving karyomapping is far less than with other methods used for the diagnosis of single gene disorders in embryos, typically taking around 4 weeks.


If you would like to book an appointment with one of our doctors you can:

  • Speak to the booking team on +44 (0)20 7837 2905  (Mon – Fri 8.30am – 6pm)
  • Email us on info@crgh.co.uk 
  • Visit our Appointments page, fill out the contact form and a member of the team will be in touch

IVF Packages With Access Fertility

IVF Packages With Access Fertility
CRGH is partnering with Access Fertility to offer a series of IVF programmes and packages. For more information please click below.

Newsletter Sign Up

Upcoming Events

No event found!